Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 318

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Validation study of thermal-hydraulics analysis code SPIRAL to a large-scale wire-wrapped fuel assembly sodium test at a low Reynolds number flow regime

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Gerschenfeld, A.*

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

Removal of core decay heat by utilizing natural circulation is expected as a significant measure to enhance the safety of sodium-cooled fast reactors (SFRs). Accurate evaluation of the temperature distribution in the fuel assembly (FA) at the low Re regime in natural circulation operation is demanded. A detailed thermal-hydraulics analysis code named SPIRAL has been developed to clarify thermal-hydraulic phenomena in the FA at various operation conditions. In this study, SPIRAL with the hybrid turbulence model was applied to analyze a large-scale fuel assembly experiment of a 91-pin bundle for two cases at the mixed and the natural convection conditions respectively in low Re regime with heat transfer from outside of the FA. The applicability of the SPIRAL to the thermal-hydraulics evaluation of FA at mixed and natural convection conditions was confirmed by the comparisons of temperatures predicted by SPIRAL with those measured in the experiment.

Journal Articles

Measurement of the transverse asymmetry of $$gamma$$ rays in the $$^{117}$$Sn($$n,gamma$$)$$^{118}$$Sn reaction

Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.

Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12

 Times Cited Count:3 Percentile:49.92(Physics, Nuclear)

no abstracts in English

Journal Articles

Viscosities of molten B$$_{4}$$C-stainless steel alloys

Nishi, Tsuyoshi*; Sato, Rika*; Ota, Hiromichi*; Kokubo, Hiroki*; Yamano, Hidemasa

Journal of Nuclear Materials, 552, p.153002_1 - 153002_7, 2021/08

 Times Cited Count:3 Percentile:44.61(Materials Science, Multidisciplinary)

Determining high precision viscosities of molten B$$_{4}$$C-stainless steel (B$$_{4}$$C-SS) alloys is essential for the core disruptive accident analyses of sodium-cooled fast reactors and for analysis of severe accidents in boiling water reactors (BWR) as appeared in Fukushima Daiichi. However, there are no data on the high precision viscosities of molten B$$_{4}$$C-SS alloys due to experimental difficulties. In this study, the viscosities of molten SS (Type 316L), 2.5mass%B$$_{4}$$C-SS, 5.0mass%B$$_{4}$$C-SS, and 7.0mass%B$$_{4}$$C-SS alloys were measured using the oscillating crucible method in temperature ranges of 1693-1793 K, 1613-1793 K, 1613-1793 K, and 1713-1793 K, respectively. The viscosity was observed to increase as the B$$_{4}$$C concentration increased from 0 to 7.0 mass%. Using the experimental data of the molten 2.5mass%B$$_{4}$$C-SS and 5.0mass%B$$_{4}$$C-SS and 7.0mass%B$$_{4}$$C-SS in the temperature range of 1713-1793 K, the equation for the viscosity of molten B$$_{4}$$C-SS alloys was determined, and the measurement error of the viscosity of molten B$$_{4}$$C-SS alloys is less than $$pm$$8%.

Journal Articles

Manufacturability estimation on burnable poison mixed fuel for improving criticality safety of HTGR fuel fabrication

Hasegawa, Toshinari; Fukaya, Yuji; Ueta, Shohei; Goto, Minoru

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 5 Pages, 2021/08

Burnable poison (BP) credit concept has been proposed as a criticality safety measure for commercial high temperature gas-cooled reactor (HTGR) fuel fabrication, so we estimated manufacturability of the BP-mixed UO$$_2$$ kernel for the practical use of the concept. As a BP, boron, gadolinium, erbium, and hafnium are investigated. Boron mixed fuel kernels are fabricated by mixing boric acid powder with U$$_3$$O$$_8$$ powder. In the case of the other BPs, BP nitrate powder is mixed with U$$_3$$O$$_8$$ powder. In order to confirm that BP remain in the kernels after the heat treatment processes, thermodynamic equilibrium analysis was performed. Above 450$$^circ$$C, boron would melt and vaporize during the heat treatment processes, so it was found that the boron mixed fuel kernel fabrication is difficult. On the other hand, it was found that gadolinium, erbium, and hafnium would change to solid oxides that do not melt and vaporize even at 2000$$^circ$$C, and there was no problem with manufacturability of the BP-mixed fuel kernel.

Journal Articles

Electrochemical studies of uranium (IV) in an ionic liquid-DMF mixture to build a redox flow battery using uranium as an electrode active material

Ouchi, Kazuki; Komatsu, Atsushi; Takao, Koichiro*; Kitatsuji, Yoshihiro; Watanabe, Masayuki

Chemistry Letters, 50(6), p.1169 - 1172, 2021/06

 Times Cited Count:2 Percentile:14.19(Chemistry, Multidisciplinary)

The electrochemical behavior of uranium (IV) tetrachloride in ionic liquid-DMF mixture was studied for first time in order to build a redox flow battery (RFB) using U as an electrode active material. We found a quasi-reversible U$$^{III}$$/U$$^{IV}$$ couple that could be applied to the anode reaction of the RFB.

Journal Articles

Acceleration of locally mesh allocated Poisson solver using mixed precision

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Shimokawabe, Takashi*; Aoki, Takayuki*

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 26, 3 Pages, 2021/05

We develop a mixed-precision preconditioner for the pressure Poisson equation in a two-phase flow CFD code JUPITER-AMR. The multi-grid (MG) preconditioner is constructed based on the geometric MG method with a three- stage V-cycle, and a cache-reuse SOR (CR-SOR) method at each stage. The numerical experiments are conducted for two-phase flows in a fuel bundle of a nuclear reactor. The MG-CG solver in single-precision shows the same convergence histories as double-precision, which is about 75% of the computational time in double-precision. In the strong scaling test, the MG-CG solver in single-precision is accelerated by 1.88 times between 32 and 96 GPUs.

Journal Articles

Physical properties of non-stoichiometric (U,Pu)O$$_{2}$$

Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Morimoto, Kyoichi; Kato, Masato

2018 GIF Symposium Proceedings (Internet), p.315 - 320, 2020/05

Recently, a research group studying at Plutonium Fuel Development Facility (PFDF) in Japan Atomic Energy Agency has systematically measured vast amounts of physical properties in the non-stoichiometric (U, Pu)O$$_{2}$$. Lattice parameter, elastic modulus, thermal expansion, oxygen potential, oxygen chemical diffusion coefficient and thermal conductivity were successfully measured as function of Pu content, O/M ratio and temperature, and the effects of Pu content and O/M ratio on their physical properties were evaluated. In this work, those experimental data are reviewed, and latest experimental data set on the non-stoichiometric (U, Pu)O$$_{2}$$ are presented. The data set would be available in development of a fuel performance code.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 4; Effect of B$$_{4}$$C addition on viscosity of austenitic stainless steel in liquid state

Ota, Hiromichi*; Kokubo, Hiroki*; Nishi, Tsuyoshi*; Yamano, Hidemasa

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.858 - 860, 2019/09

A viscosity measurement apparatus has been developed. It is known that the measurement of the viscosity of molten alloy at elevated temperatures is difficult due to the difficulty of handling for low viscosity fluids such as the stainless steel (SS)+B$$_{4}$$C alloy. In this study, the viscosities of the molten nickel (Ni) and stainless steel (SS) were measured by the oscillating crucible method to confirm the performance of the viscosity measurement apparatus as a first step. This method is suitable for high temperature molten alloys. A crucible containing molten metal is suspended, and a rotational oscillation is given to the crucible electromagnetically. The oscillation was damped by the friction of molten metal. The viscosity is determined from the period of oscillation and the logarithmic decrement. The crucible was connected to a mirror block and an inertia disk made of aluminum, and whole of them was suspended by a wire made of platinum-13% rhodium alloy. A laser light is irradiated to the mirror. The reflection light is detected by the photo-detectors, and then, the logarithmic decrement of molten metal is determined. The viscosities of molten nickel and SS melts were measured up to 1823 K. In these results, the measured viscosity values of molten Ni and SS were close to those of the literature values of molten Ni and SS. By the equipment, the viscosity of molten SS+B$$_{4}$$C alloys are measured. The B$$_{4}$$C concentration dependence of the viscosity of molten SS+B$$_{4}$$C alloys is to be clarified.

Journal Articles

Simulation of fluidity, dispersion and mass transfer in an annular centrifugal contactor

Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki; Misumi, Ryuta*; Kunii, Kanako*; Todoroki, Kei*; Nishi, Kazuhiko*; Kaminoyama, Meguru*

Kagaku Kogaku Rombunshu, 44(6), p.335 - 340, 2018/11

Concerning an annular centrifugal contactor which has high throughput and separation performance, the effect of operational condition on fluidic and dispersion behavior, which are important to improve the contactor performance, was investigated by computational fluid dynamics (CFD) analysis based on the turbulence model, and the calculated results were validated by experimental data. The liquid phase in the annular zone was gradually divided into two regions vertically with increasing the rotor speed and decreasing the flowrate, and the liquid flow moved toward the center of the housing bottom was generated in the lower annular zone under any operational condition. The droplet size of the dispersed phase in the annular zone decreased with increasing the rotor speed and decreasing the flowrate. These calculation results showed a good agreement with experimental data. The CFD analysis considering mass transfer between aqueous and organic phases was also attempted, and it was confirmed that the change of extraction performance with the rotor speed showed the same tendency as the experimental result.

Journal Articles

Validation of three-dimensional finite-volume-particle method for simulation of liquid-liquid mixing flow behavior

Kato, Masatsugu*; Funakoshi, Kanji*; Liu, X.*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Kamiyama, Kenji

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

Journal Articles

Flow behavior in annular centrifugal extractors with different vessel sizes

Misumi, Ryuta*; Todoroki, Kei*; Kunii, Kanako*; Nishi, Kazuhiko*; Kaminoyama, Meguru*; Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki

Kagaku Kogaku Rombunshu, 44(5), p.285 - 291, 2018/09

Annular centrifugal extractors have been anticipated for use as extractors in spent nuclear fuel recycling. The extraction rate and the liquid-liquid dispersion are related to the flow pattern in the vessel. However, no study has clarified flow patterns in vessels of various scales. For this study, flow pattern characteristics are quantified for extractors of two scales. An extractor has a mixing zone around the vessel bottom and a separation zone in the cylindrical rotor. For this experiment, distilled water was fed into the vessel. Flow behavior in the mixing zone was observed from a side view using a digital video camera at various rotor speeds and supply flow rates for extractors of two scales. In some cases, the liquid horizontal velocity vectors in the mixing zone were measured using particle image velocimetry. Results demonstrate that flow behaviors in the mixing zone in both scales of extractors are classifiable as three types, changing with operational conditions: Type A, Type B, and a Transition regime. For the Type A state, the mixing zone is fully filled with liquid from the vessel bottom up to the lower edge of the rotor. In the Type B state, the zone with existing liquid is vertically divisible into two regions. Lower rotor speeds and higher flow rates tend to produce Type A state flow behavior. The boundary operational condition between Type A and the Transition regime are correlated with the normalized supply flow rate and pumping capacity of the rotor, which is evaluated from liquid surface level in a rotor formed by centrifugal force. Furthermore, the fluid velocity in the mixing zone is roughly proportional to the rotor surface circumferential speed irrespective of the vessel scale.

Journal Articles

Atomistic simulation of phosphorus segregation to $$Sigma$$3(111) symmetrical tilt grain boundary in $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

Modelling and Simulation in Materials Science and Engineering, 26(6), p.065005_1 - 065005_10, 2018/09

AA2018-0168.pdf:2.74MB

 Times Cited Count:4 Percentile:19.87(Materials Science, Multidisciplinary)

Irradiation-induced grain boundary phosphorus segregation is an important factor for estimating the embrittlement of nuclear reactor pressure vessel steels, but the physical process of phosphorus migration to grain boundaries is still unclear. We numerically studied phosphorus migration toward $$Sigma$$3(111) symmetrical tilt grain boundary in $$alpha$$-iron using molecular dynamics. We found that, in the vicinity of the grain boundary within $$sim$$1 nm distance, an iron-phosphorus mixed dumbbell and an octahedral interstitial phosphorus atom push a self-interstitial atom into the grain boundary, and the phosphorus atom becomes a substitutional atom. A phosphorus vacancy complex in the region also becomes dissociated, and the vacancy is absorbed in the grain boundary without dragging phosphorus. The results claim that a novel view of the segregation process is required.

Journal Articles

Viscosity measurement of nickel and stainless steel aiming at systematic viscosity measurement for molten mixture of stainless steel and boron-carbide

Kokubo, Hiroki*; Nishi, Tsuyoshi*; Ota, Hiromichi*; Yamano, Hidemasa

Nihon Kinzoku Gakkai-Shi, 82(10), p.400 - 402, 2018/09

 Times Cited Count:7 Percentile:36.32(Metallurgy & Metallurgical Engineering)

It is important to obtain the viscosity of a mixed alloy consisting of molten stainless steel and boron-carbide (SUS316L + B$$_{4}$$C alloy) for the improvement of severe accident assessment methodology for sodium-cooled fast reactors. In this study, the viscosities of the molten nickel (Ni) and stainless steel (SUS316L) were measured by the oscillating crucible method to confirm the performance of the viscosity measurement apparatus as a first step. The viscosities of molten Ni and SUS316L melts were measured up to 1823 K. It was found that the measured viscosity values of molten Ni and SUS316L were estimated from the deviation of the experimental data, were $$pm$$4% and $$pm$$3%, respectively. It was also found that those of molten Ni and SUS316L were close to those of the literature values of molten Ni and similar composite stainless steels. Moreover, we tentatively measured the viscosity of molten SUS316L-5 mass%B$$_{4}$$C alloy. The fitted results of the viscosity for molten Ni and SUS316L were obtained.

Journal Articles

Rotor speed and supply flow rate effects on flow behavior in an annular centrifugal extractor

Misumi, Ryuta*; Kunii, Kanako*; Todoroki, Kei*; Nishi, Kazuhiko*; Kaminoyama, Meguru*; Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki

Kagaku Kogaku Rombunshu, 44(3), p.135 - 141, 2018/05

 Times Cited Count:1 Percentile:4.81(Engineering, Chemical)

Annular centrifugal extractors have been used in spent nuclear fuel reprocessing, but the relation between the extraction rate and flow pattern in the vessel remains unclear. This study quantifies characteristics of the flow pattern to clarify this relation. An extractor produces a mixing zone around the vessel bottom and a separation zone in the rotor. The horizontal velocity of the liquid in the mixing zone was measured using particle image velocimetry at various rotor speeds and supply flow rates. Flow behaviors in the mixing zone are of three types, changing with operational conditions: Type A, Type B, and a transition regime. At lower rotor speeds and high supply flow rates, the mixing zone is fully filled with liquid from the vessel bottom up to the lower edge of the rotor: the Type A flow state. At high rotor speeds and low supply flow rates, the zone with existing liquid is vertically divisible into two regions: near the vanes and around the bottom of the rotor, which is the Type B flow state. A transition regime is also observed between Type A and Type B state. In each region surrounding the two vanes on the vessel bottom and the vessel wall, the liquid flowed in the direction of rotor rotation along the vessel wall. Liquid flow altered by the vane flowed toward the center of vessel bottom. The liquid then entered the separation zone through the orifice at the rotor bottom. For the Type A state, the horizontal velocity distribution was roughly proportional to the rotor speed. For the Type B state, the horizontal velocities around the vessel bottom were lower than those of Type A and were not proportional to the rotor speed. Presumably, the liquid fed into the vessel went directly to the rotor instead of passing between the two vanes attached to the vessel bottom.

Journal Articles

Nuclear thermal design of high temperature gas-cooled reactor with SiC/C mixed matrix fuel compacts

Aihara, Jun; Goto, Minoru; Inaba, Yoshitomo; Ueta, Shohei; Sumita, Junya; Tachibana, Yukio

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.814 - 822, 2016/11

Japan Atomic Energy Agency (JAEA) has started R&D for apply SiC/C mixed matrix to fuel element of high temperature gas-cooled reactors (HTGRs) to improve oxidation resistance of fuel. Nuclear thermal design of HTGR with SiC/C mixed matrix fuel compacts was carried out as a part of above R&Ds. Nuclear thermal design was carried out based on a small sized HTGR for developing countries, HTR50S. Maximum enrichment of uranium is set to be 10 wt%, because coated fuel particles with 10 wt% uranium have been fabricated in Japan. Numbers of kinds of enrichment and burnable poisons (BPs) were set to be same as those of original HTR50S (3 and 2, respectively). We succeeded in nuclear thermal design of a small sized HTGR which performance was equivalent to original HTR50S, with SiC/C mixed matrix fuel compacts. Based on nuclear thermal design, intactness of coated fuel particles was evaluated to be kept on internal pressure during normal operation.

Journal Articles

Thermal mixing behavior in the annulus of co-axial double-walled piping in HTGR

Tochio, Daisuke; Fujiwara, Yusuke; Ono, Masato; Shinohara, Masanori; Hamamoto, Shimpei; Iigaki, Kazuhiko; Takada, Shoji

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 9 Pages, 2016/06

From the HTTR operational experience, it is needed to clear the thermal mixing characteristics of the helium gas at the annulus of the co-axial double-walled piping in HTGR. In this paper, thermal-hydraulic analysis on the helium gas at the annular flow path of the co-axial double pipe with T-junction was conducted. The analysis was performed under the condition of the different annular flow path height and with the different flow rate of the higher- and the lower-temperature helium gas. It is shown that the thermal mixing behavior is not so much affected by the flow rate of higher- and lower-temperature helium gas, and it is difficult to mix the helium gas with the smaller height of the annular flow path. It is confirmed that it is difficult to mix the helium gas in the annular flow path of the co-axial double-walled piping by using the hydraulic behavior, and it is necessary to arrange the mixing promotor in the annular flow path.

Journal Articles

Determination of plutonium isotope ratios in individual uranium-plutonium mixed particles with inductively coupled plasma mass spectrometry

Esaka, Fumitaka; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

Journal of Radioanalytical and Nuclear Chemistry, 306(2), p.393 - 399, 2015/11

 Times Cited Count:6 Percentile:45.66(Chemistry, Analytical)

An analytical technique was developed by a combination of single particle dissolution, chemical separation of uranium, plutonium and americium with extraction chromatography using UTEVA resins and measurement with inductively coupled plasma mass spectrometry (ICP-MS). This method was applied to plutonium isotope ratio analysis of individual U-Pu particles with U/Pu ratios ranging from 1 to 70. Consequently, $$^{240}$$Pu/$$^{239}$$Pu, $$^{241}$$Pu/$$^{239}$$Pu and $$^{242}$$Pu/$$^{239}$$Pu isotope ratios were successfully determined, while it was impossible to determine $$^{238}$$Pu/$$^{239}$$Pu ratios due to the high process blank values on m/z 238.

Journal Articles

Mixing behavior of molten PbCl$$_2$$ with alkali chlorides

Okamoto, Yoshihiro; Yaita, Tsuyoshi; Minato, Kazuo

Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 73(8), p.745 - 747, 2005/08

 Times Cited Count:0 Percentile:0.02(Electrochemistry)

The structural change of molten PbCl$$_2$$ by mixing with alkali chlorides was investigated by Pb L$$_3$$-edge XAFS measurements. By the mixing, the nearest neighbor Pb-Cl distance and its coordination number increased, while the Debye-Waller factor and the 3rd cumulant decreased. It is concluded that the coordination structure (PbCl$$_6$$)$$^{4-}$$ is enhanced by the mixing with alkali chlorides.

Journal Articles

Polymeric Co-C$$_{60}$$ compound phase evolved in atomistically mixed thin films

Sakai, Seiji; Naramoto, Hiroshi*; Lavrentiev, V.*; Narumi, Kazumasa; Maekawa, Masaki; Kawasuso, Atsuo; Yaita, Tsuyoshi; Baba, Yuji

Materials Transactions, 46(4), p.765 - 768, 2005/04

 Times Cited Count:17 Percentile:70.77(Materials Science, Multidisciplinary)

A systematic study of the atom-level mixtures between Co and C$$_{60}$$ has made possible to find a new C$$_{60}$$-based compound phase, Co$$_{x}$$C$$_{60}$$ (x$$leq$$5). It is confirmed with the EXAFS analysis and the positron annihilation study that the polymeric structure is developed three-dimensionally by bridging two C$$_{60}$$ molecules with the covalently bonded Co atom.

Journal Articles

Uranium nitride chloride UNCl; 30K-class ferromagnet with layered structure

Nakamura, Akio; Akabori, Mitsuo; Ogawa, Toru; Huntelaar, M. E.*

Physica B; Condensed Matter, 359-361, p.1021 - 1023, 2005/04

 Times Cited Count:1 Percentile:6.21(Physics, Condensed Matter)

no abstracts in English

318 (Records 1-20 displayed on this page)